vasca.visualization
¶
Visualization related methods for VASCA
Module Contents¶
Functions¶
Plot the selected sources and (optinally) the visit detections on the sky. |
|
Plot the reference sky map. |
|
Plot the nr visits and optionally (selected) sources (optinally) on the sky. |
|
Plot the nr visits, fields or exposure on the sky. Coverage table has to be previously created with region.add_coverage_hp. |
|
Plot histogram for passed astropy.table.Table and variable |
|
Plot scatter plot for passed astropy.table.Table and variables |
|
Diagnotic plots for VASCA pipe |
|
Plot the light curves of the passed sources. |
|
Plots light curve |
|
Runs and plots Lomb Scargle diagram |
|
Plots spectral energy distribution |
API¶
- vasca.visualization.plot_sky_sources(tt_src, tt_det=None, only_selected=True, ax=None, src_id='rg_src_id', sky_region_wcs=None, draw_labels=True, src_kwargs=None, det_kwargs=None)[source]¶
Plot the selected sources and (optinally) the visit detections on the sky.
- tt_srcastropy.table.Table
Source list to plot. Has to contain “ra”, “dec” and srd id columns.
- tt_detastropy.table.Table, optional
Detection list to plot. Has to contain “ra”, “dec” and src_id columns. Default is None.
- only_selected: bool, optional
Show only selected sources. tt_src must have a “sel” column. default is True.
- axaxes, optional
Matplotlib axes to plot on. The default is None.
- src_id: str, optional
Write the source ID next to its marker, saved in the passed column name, typically “rg_src_id”, “fd_src_id” or None. Default is “”rg_src_id””
- sky_region_wcs: (regions.SkyRegion, WCS) , optional
Plot only sources within the sky region. A WCS has to be passed along ina tuple. Default is None.
- draw_labelsbool, optional
Draw labels next to sources showing “src_iud” entry. The default is True.
- src_kwargsdict, optional
Keyword arguments for pyplot.plot of the sources. The default is None.
- det_kwargsdict, optional
Keyword arguments for pyplot.patches.Polygon of the detections. The default is None.
- matplotlib.axes
Used Matplotlib axes.
- astropy.table.Table
Sources plotted from tt_src
- vasca.visualization.plot_field_sky_map(field, fig=None, ax=None, img_idx=-1, sky_region=None, **img_kwargs)[source]¶
Plot the reference sky map.
- field: vasca.BaseField
VASCA field to be plotted.
- fig: figure, optional
Matplotlib figure to draw on, if None a new figure is created. The default is None.
- axaxes, optional
Matplotlib axes to plot on. The default is None.
- img_idxint, optional
Index nr of the visit in the tt_visits table. If -1 is passed the reference image is shown. Default is -1.
- sky_region: regions.SkyRegion , optional
Plot only within the sky region. The field WCS will be used Default is None.
- **img_kwargsdict
Key word arguments for pyplot.imshow plotting.
- matplotlib.figure
Matplotlib figure used to draw
- matplotlib.graph.AxesImage
Matplotlib axes of 2D image.
- vasca.visualization.plot_region_sky_gnomeview(region, ra, dec, sel_srcs=True, gw_kwargs=None, ps_kwargs=None)[source]¶
Plot the nr visits and optionally (selected) sources (optinally) on the sky.
- regionvasca.region.Region
Region for which is plotted.
- rafloat
RA of the center of the sky figure.
- dec: float
DEC of the center of the sky figure.
- sel_srcsbool, optional
Show only selected sources. The default is True.
- gw_kwargsdict, optional
Keyword arguments for healpy.gnomview. The default is None.
- ps_kwargsdict, optional
Keyword arguments for healpy.projscatter. The default is None.
- matplotlib.axes
Used Matplotlib axes.
- vasca.visualization.plot_region_sky_mollview(region, var='nr_vis', mw_kwargs=None)[source]¶
Plot the nr visits, fields or exposure on the sky. Coverage table has to be previously created with region.add_coverage_hp.
- regionvasca.region.Region
Region for which is plotted.
- coordstr
Coordinate system, Galactic or ICKS
- var: str
Variable to plot, exposure “exp”, visits “nr_vis” or or fields “nr_fds”
- mw_kwargsdict, optional
Keyword arguments for healpy.mollview. The default is None.
- matplotlib.axes
Used Matplotlib axes.
- vasca.visualization.plot_table_hist(tt, var, ax=None, logx=False, obs_filter_id=None, **hist_kwargs)[source]¶
Plot histogram for passed astropy.table.Table and variable
- ttastropy.table.Table
Table containing a column with the plotted variable.
- varstr, optional
Variable name
- axmatplotlib.axes, optional
Axes to draw on. The default is None.
- logxbool, optional
Histogram of log10(var) instead of var. The default is False.
- obs_filter_id: int, optional
Observation filter ID Nr., if None all filters are shown. THe default is None.
- **hist_kwargsdict
Key word arguments passed tu plt.hist
- matplotlib.axes
Axes that where used to draw.
- list of float
Histogram bin values.
- list of float
Histogram bins, default is [selected, all] events.
- vasca.visualization.plot_table_scatter(tt, varx, vary, ax=None, xlim=None, ylim=None, invert_xaxis=None, invert_yaxis=None, xscale='linear', yscale='linear', obs_filter_id=None, grp_var='sel', grp_vals=None, add_projection=False, **scatter_kwargs)[source]¶
Plot scatter plot for passed astropy.table.Table and variables
- ttastropy.table.Table
Table containing columns with the plotted variables.
- varxstr
Variable name on X-axis
- varystr
Variable name on Y-axis
- axmatplotlib.axes, optional
Axes to draw on. The default is None.
- xlimlist, optional
List with [xmin, xmax] axis value. Default is None.
- ylimlist, optional
List with [ymin, ymax] axis value. Default is None.
- xscalestr, optional
Type of x-scale (“log”, “linear”). Default is “linear”.
- yscalestr, optional
Type of y-scale (“log”, “linear”). Default is “linear”.
- obs_filter_id: int, optional
Observation filter ID Nr., if None all filters are shown. The default is None.
- grp_var: str, optional
Group scatter plot by colors based on this table variable. The default is “sel”. If None is passed no groups will be done.
- add_projection: bool, optional
Add histogram with projection on the sides
- **plot_kwargsdict
Key word arguments passed tu plt.plot
- axmatplotlix.axes
Axes that where used to draw.
- vasca.visualization.plot_pipe_diagnostic(tc, table_name, plot_type, fig_size=(12, 8), obs_filter_id=None)[source]¶
Diagnotic plots for VASCA pipe
- tcvasca.TableCollection
Table collection, either field or region
- table_namestr
Name of the table, tt_detections or tt_sources
- plot_typestr
Type of plot, either “hist” or “scatter”
- fig_size: (float,float)
Matplotlib figure (x,y) size in inches.
- obs_filter_id: int, optional
Observation filter ID. Default is None.
- matplotlib.figure
Figure used for plotting
- dict
Dictionary with plot variables keys and plot settings values
- vasca.visualization.plot_light_curves(tc, fd_src_ids=None, rg_src_ids=None, fig=None, ax=None, ylim=None, plot_upper_limits=True, flux_var='flux', **errorbar_kwargs)[source]¶
Plot the light curves of the passed sources.
- tcVASCA.table.TableCollection
Either field, region or source that contains the light curves.
- fd_src_idslist or int
List or single field source IDs to plot. Default is None.
- rg_src_idslist or int
List or single region source IDs to plot. Default is None.
- fig: figure, optional
Matplotlib figure to draw on, if None a new figure is created. The default is None.
- axaxes, optional
Matplotlib axes to plot on. The default is None.
- ylimlist, optional
Limits of the y axis. Default is None
- plot_upper_limitsbool
Plot upper limits to the lightcurve. The default is True.
- flux_var: str, optional
Variable in table to be used to get flux Jy
- **errorbar_kwargsdict
Key word arguments for pyplot.errorbars plotting.
- matplotlib.figure
Matplotlib figure used to draw
- matplotlib.axes
Used Matplotlib axes.
- vasca.visualization.plot_light_curve(tc_src, fig=None, ax=None, show_gphoton=True, add_axes=True, **errorbar_kwargs)[source]¶
Plots light curve
- tc_src: vasca.TableCollection
Table collection containing tt_sed table.
- fig: figure, optional
Matplotlib figure to draw on, if None a new figure is created. The default is None.
- axaxes, optional
Matplotlib axes to plot on. The default is None.
- show_gphoton: bool, optional
Show gphoton light curve too, if present in table collection?. The default is True.
- add_axes: bool, optional
Add additional x- and y-axis on the empty sides
- **errorbar_kwargsdict
Key word arguments for pyplot.errorbars plotting.
- matplotlib.figure
Matplotlib figure used to draw
- matplotlib.axes
Used Matplotlib axes.
- vasca.visualization.plot_lombscargle(tt_lc, fig=None, ax=None, ax_phase=None, ax_lc=None, obs_filter='NUV', nbins_min=10, logy=False, freq_range=[0.03, 2] / uu.d, plot_dtbins=True)[source]¶
Runs and plots Lomb Scargle diagram
- tc_src: vasca.TableCollection
Table collection containing tt_sed table.
- fig: figure, optional
Matplotlib figure to draw on, if None a new figure is created. The default is None.
- axaxes, optional
Matplotlib axes to plot LombScargle diagram on. The default is None.
- ax_lcaxes, optional
Matplotlib axes to plot with the light curve to plot peak frequency model on. The default is None.
- ax_phaseaxes, optional
Matplotlib axes to plot phase diagram. The default is None.
- obs_filterstr, optional
Observational filter to perform LombScargle on. The default is “NUV”
- nbins_minint, optional
Minimum number of time bins to perform LombScargle. The default is 20.
- logybool, optional
Plot LombScargle diagram in log(Power). The default is True.
- freq_rangelist
Minimum and maximum Frequency. If None calculated automatically.
- matplotlib.figure
Matplotlib figure used to draw
- matplotlib.axes
Used Matplotlib axes.
- dict
Lomb Scargle results
- vasca.visualization.plot_sed(tc_src, fig=None, ax=None, plot_spec_lines=False, plot_spec=False, **errorbar_kwargs)[source]¶
Plots spectral energy distribution
- tc_src: vasca.TableCollection
Table collection containing tt_sed table.
- fig: figure, optional
Matplotlib figure to draw on, if None a new figure is created. The default is None.
- axaxes, optional
Matplotlib axes to plot on. The default is None.
- plot_spec_lines: bool
Plot typical spectral lines in White Dwarfs. The default is False.
- plot_spec: bool
Plot typical spectral lines in White Dwarfs. The default is False.
- **errorbar_kwargsdict
Key word arguments for pyplot.errorbars plotting.
- matplotlib.figure
Matplotlib figure used to draw
- matplotlib.axes
Used Matplotlib axes.
- dict
Dictionary with fit information